منابع مشابه
Adaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملadaptive rbf network control for robot manipulators
tthe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. this paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. as a novelty, the proposed controller employs a simple gaussian radial-basis-function network as an uncertainty estimator. the proposed netw...
متن کاملSupervised SOM Based Architecture versus Multilayer Perceptron and RBF Networks
We address a contrastive study between the well known Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neural networks and a SOM based supervised architecture in a number of data classification tasks. Well known databases like Breast Cancer, Parkinson and Iris were used to evaluate the three architectures by constructing confusion matrices. The results are encouraging and indicate t...
متن کاملUsing a Three-layered Perceptron and RBF Networks
We propose an Euro banknote recognition system using two types of neural networks; a three-layered perceptron and a Radial Basis Function (RBF) network. A three-layered perceptron is well known method for pattern recognition and is also a very effective tool for classifing banknotes. An RBF network has a potential to reject invalid data because it estimates the probability distribution of the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Network World
سال: 2012
ISSN: 1210-0552,2336-4335
DOI: 10.14311/nnw.2012.22.031